SM benchmark processes for the Higgs search at the Tevatron

Fabrizio Margaroli

Purdue University

Where to look

Explaining the EW symmetry breaking is a major goal for particle physics Finding the Higgs boson a good proof that this mechanism is the one that nature chose Global fit with Tevatron's

 m_{top} = 173.3 \pm 1.3 GeV and m_{W} = 80.399 \pm 0.025 GeV gives expected

- m_H = **89+35-26 GeV** @ 68 % CL
- m_H < 158 GeV @ 95 % CL

Direct searches at LEP: $m_H > 114.4 \text{ GeV} @ 95\% \text{ CL}$

Where to look

Explaining the EW symmetry breaking is a major goal for particle physics Finding the Higgs boson a good proof that this mechanism is the one that nature chose Global fit with Tevatron's

 m_{top} = 173.3 \pm 1.3 GeV and m_{W} = 80.399 \pm 0.025 GeV gives expected

- m_H = **89+35-26 GeV** @ 68 % CL
- m_H < 158 GeV @ 95 % CL

Direct searches at LEP: $m_H > 114.4 \text{ GeV} @ 95\% \text{ CL}$

Where to look

- σ(VH)xBR(H→bb)~0.1pb at low mass
- Presence of extra vector boson decays helps to reduce backgrounds

- σ(H)xBR(H→bb)~0.5pb at low mass
- But bbar final state overwhelmed by QCD

- σ(H)xBR(H→WW)~0.3pb
 at high mass
- But presence of charged and neutral leptons allows cleaner signature

Where?

Fermilab's Tevatron Run II $p\bar{p}$ collider at 1.96 TeV, running since year '01. Currently performing very well:

- New record in instantaneous luminosity 4 · 10³² cm⁻² s⁻¹
- New record in delivered luminosity: >2fb-1 per year
- Two multi-purpose, well-understood detectors CDF and DO

Higgs created in 1 in $O(10^{11}/10^{12})$ collisions at the Tevatron

How many

The roadmap to Higgs

Challenges	Low mass	High mass
Broad resonance	V	
No resonance!		V
Terribly low S/B	V	V
Need for MVA	V	V
Control QCD rate	V	
Control of W/Z+jets	V	
Control QCD kinematics	V	

- a wealth of good physics
- and in several sectors of the SM!

Challenges	Low mass	High mass
Broad resonance	V	
No resonance!		V
Terribly low S/B	V	V
Need for MVA	V	V
Control QCD rate	V	
Control of W/Z+jets	V	
Control QCD kinematics	V	

- a wealth of good physics
- and in several sectors of the SM!

Challenges	Low mass	High mass
Broad resonance	V	
No resonance!		V
Terribly low S/B	V	V
Need for MVA	V	V
Control QCD rate	V	
Control of W/Z+jets	V	
Control QCD kinematics	V	

- a wealth of good physics
- and in several sectors of the SM!

Challenges	Low mass	High mass
Broad resonance	V	
No resonance!		V
Terribly low S/B	V	V
Need for MVA	V	V
Control QCD rate	V	
Control of W/Z+jets	V	
Control QCD kinematics	V	

- a wealth of good physics
- and in several sectors of the SM!

Z→bb̄

- Quark/gluons hadronize and produce particle jets.
- Seconday vertex: B mesons have long lifetime: identification through search of a secondary vertex within a jet:
- √ b-tag eff: ~ 40%
- ✓ fake rate ~ 0.5%
- Neural Network for flavor separation
 - L_{xy}, vertex mass, track multiplicity, impact parameter, semi-leptonic decay information, etc...
- Use b-jet trigger to control the rate
- S/B=1/30 for both CDF and D0
- QCD background modeled from data

Total cross section:w/o multivariate

Total cross section:w/ multivariate

Total cross section: consistency

- Good consistency among channels/experiments → no apparent bias from usage of multivariate techniques
- No reason to expect it!: all systematic sources studied on independent samples, then propagated through the analyses

Benchmark processes to WH/ZH->MET+jets

Diboson in MET+jets(+X)

Limited dijet mass resolution → overlap of the W and Z dijet mass peaks

- require large MET and two jets
- no requirement on leptons

QCD here is dominant due to calorimeter energy resolution effects

Approach to QCD suppression:

 model the jet energy resolution as a function of jet Pt and eta to derive a probability for the event to be QCD like (CDF and DO)

Test in events with identified leptons to check goodness

Fake Missing E_⊤

Diboson in MET+jets(+X)

Limited dijet mass resolution → overlap of the W and Z dijet mass peaks

- require large MET and two jets
- no requirement on leptons

QCD here is dominant due to calorimeter energy resolution effects

- model the jet energy resolution as a function of jet Pt and eta to derive a probability for the event to be QCD like (CDF and DO)
- Test in events with identified leptons to check goodness

Fake Missing E_⊤

WW/WZ/ZZ→MET+jets

Goal: to measure WW/WZ/ZZ together in events where one boson decays to jets

After event selection cuts,

B = 45000

S=1500 events (S/B=1/30)

Background model

- Use QCD events in the Δφ(E_T,P_T)>1.0 to model QCD in signal region
- MC for top, W/Z+jets
- W+jets: use γ+jj data to model it
 - Significantly reduces systematics associated to limited understanding of W+jets

Phys.Rev.Lett.103:091803,2009.

 $\sigma(WW+WZ+ZZ)=18.0 \pm 2.8(stat) \pm 2.4(syst) \pm 1.1(lumi) pb$

Going lower in cross sections

Idea: to measure a (smaller than WW/WZ/ZZ but)
large and well-understood background with the same
event selection as the HV search

- require large MET and two/three jets
- At least one b-tagged jet
- Explicit veto on charged leptons (e/mu)
- Accept tau decays without explicit ID

Top production sneaks in when leptons and/or jets are

not reconstructed

Typical QCD event

- Utilize the different kinematical and topological properties of QCD events
- in particular the missing Pt from the tracker (MPT)
- develop a multivariate event selection (CDF and D0)

Going lower in cross sections

Idea: to measure a (smaller than WW/WZ/ZZ but)
large and well-understood background with the same
event selection as the HV search

- require large MET and two/three jets
- At least one b-tagged jet
- Explicit veto on charged leptons (e/mu)
- Accept tau decays without explicit ID

Top production sneaks in when leptons and/or jets are

not reconstructed

A sketch of ZH→vvbb event

- Utilize the different kinematical and topological properties of QCD events
- in particular the missing Pt from the tracker (MPT)
- develop a multivariate event selection (CDF and D0)

tt in MET+(b)-jets

Using same two-step strategy as in search for $ZH \rightarrow vvbb$:

One NN to suppress overwhelming QCD background and improve S/sqrt(S+B)

Then one more NN to isolate the signal from the backgrounds that have large rate uncertainty (W+jets)

Many new particles can appear here in addition to Higgs

- $bb \rightarrow bb\chi^0\chi^0$
- 3rd gen leptoquarks
- technicolor etc.etc.

ttbar cross section measurement here is

- a test of the backgrounds/machinery
- independent from other $\sigma_{\!\scriptscriptstyle H}$ measurements

CDF Run II Preliminary, L = 5.7 fb⁻¹

Top Pair

Single Top Diboson

W+HF → DATA

 \rightarrow can be combined to increase precision $\sigma_{tt}(M_{top}=172.5)=7.1\pm1.1$ (stat+syst+lumi) pb

Single top in MET+(b)jets

Using same two-step strategy as in search for ZH→vvbb:

 One NN to suppress overwhelming QCD background and improve S/sqrt(S+B)

 Then one more NN to isolate the signal from the backgrounds that have large rate uncertainty (W+jets)

Single top cross section measurement here is

- a test of the backgrounds/machinery
- independent from other o
 _t measurements →
 can be combined to increase precision

 $\sigma_t(M_{top}=172.5)=4.9\pm2.3$ (stat+syst+lumi) pb

Benchmark processes to WH->I+MET+jets

WW/WZ → I+MET+jets

Idea: to measure a background with the very similar topology and event selection as the HW search

- require large MET and two jets
- one identified electron/muon
- Taus are especially challenging due to the large QCD background they carry with, and <u>are not considered</u> here

First evidence in this channel provided by D0 with L=1.1fb⁻¹

S=1000

B=27000

Multivariate technique provides some 30% improvement in sensitivity = 4.4sigma

 $\sigma(WW+WZ)=20.2+4.5 \text{ pb}$

SM prediction of 16.1 +/- 0.9 pb.

$WW/WZ \rightarrow I+MET+jets$

Two different analysis

- one optimized for the dijet mass scan
- another uses Matrix Element technique.

Similar sensitivity, clear observations

$$\sigma$$
(WW+WZ)= 16.5 + 3.2 pb

SM prediction of 16.1 +/- 0.9 pb.

Single top in I+MET+(b)jets

Now measure a signal smaller than WW/WZ but with (almost) the same event selection as the HW search

require large MET and two/three(four) jets CDF(D0)

Simultaneous observations at CDF and DO

- At least one b-tagged jet
- One charged leptons (e/mu)

Benchmark processes to ZH→||+jets

WZ/ZZ→IIqq

Now measure WZ/ZZ but with similar event selection as the HZ→IIbb search but withou b-tagging

- Opposite charge leptons(e/mu) in Z mass window
- Invariant mass of the dijet system close to Z
- Use quark/gluon jet discriminator

For signal extraction,

- Leave number of background and signal events unconstrained
- Treat systematic uncertainties as nuisance parameters in the fit

Result of Fit

- Background: 13603 ± 840
 - (Predicted 13541)
- Signal: 86.4 ± 107.7
 - (Predicted 201.9)
- Significance (p-value for background only hypothesis)
 - Observed: 0.167
 - Expected: 0.097

CDF Run II Preliminary (4.8 fb-1) Events / 0.02 units Fit Results 10⁴ Signal Fakes **EWK Background** Signal x 100 Data 10⁻¹ -0.9 -0.8 -0.7 -0.6 -0.5 NN Output

Benchmark processes to H->WW

WW largest physics background to H→WW

- require large MET and two opposite charge leptons(e/mu)
- Veto presence of jets to suppress that
- Use Matrix Element to compute probability for event to be signal like
- Plug into a likelihood ratio to further discriminate S from B

SM predicts σ_{WW} = 11.7 ± 0.7 pb

$$\sigma_{WW} = 12.1 \pm 0.9 \text{ (stat)} + 1.6 \text{ (syst) pb}$$

Mass extraction(1)

What if you really see a large excess over the background using multivariate techniques - how do you know if it's the Higgs?

Strategy already implemented and tested!

- 1) Remove the reconstructed resonance from your multivariate technique inputs
- 2) Cut on the MVA output and devise a method to measure its mass Case example: σ_{tt} and M_{top} measurement in the all-hadronic channel with 1fb⁻¹ Don't use the reconstructed resonance as input so to leave it unbiased S/B ratio ~1/100 before NN cut, 1/3 after

 $\sigma_{\!\scriptscriptstyle tt}$ and $M_{\scriptscriptstyle top}$ measurements in excellent agreement with orthogonal existing ones

Mass extraction(2)

What if you really see a large excess over the background using multivariate techniques - how do you know if it's the Higgs? Strategy:

- 1) Remove the reconstructed resonance from your multivariate technique inputs
- 2) Cut on the MVA output and devise a method to measure its mass Case example: σ_t measurement in the lepton+MET+(b)jets channel Don't use the reconstructed resonance as input so to leave it unbiased

No attempt at measuring the mass, but mass peak now visible

Mass extraction(3)

What if you really see a large excess over the background using multivariate techniques - how do you know if it's the Higgs? Strategy:

- 1) Remove the reconstructed resonance from your multivariate technique inputs
- 2) Cut on the MVA output and devise a method to measure its mass Case example: σ_t measurement in the lepton+MET+(b)jets channel Don't use the reconstructed resonance as input so to leave it unbiased

Yes ok but what about the high mass, H→WW→II_{VV}? Good luck!

Conclusions

- Measured even the smallest standard model backgrounds to low mass Higgs production
- And in doing so, test all the tools needed for Higgs hunt!
 - Search/observation of dibosons in all decay modes that include V→jets
 - ttbar contribution
 - Single top observation
- At high mass backgrounds known better, still measured with high precision
 - Most sensitive measurement of WW production
- Next <u>crucial</u> step: observe diboson production with b-jets in the final state!
 Coming soon

Conclusions

- Measured even the smallest standard model backgrounds to low mass Higgs production
- And in doing so, test all the tools needed for Higgs hunt!
 - Search/observation of dibosons in all decay modes that include V→jets
 - ttbar contribution
 - Single top observation
- At high mass backgrounds known better, still measured with high precision
 - Most sensitive measurement of WW production
- Next <u>crucial</u> step: observe diboson production with b-jets in the final state!
 Coming soon

Thank you!